sábado, 24 de mayo de 2014

La Caja o chasis

Una de las partes más importantes de una computadora es la caja, esta es la que se encarga de albergar todos los componentes en su interior de forma adecuada y de protegerlos de las agresiones del medio. La caja es un componente básico para cualquier computadora pero también es el lienzo sobre el que muchos realizan sus creaciones.

La caja del sistema consta de los siguientes componentes:

1. Cubierta
2. Interruptores
3. Fuente de energía ( Power Supply)
4. Bahías para unidad
5. Chasis
6. Panel frontal

La forma y tamaño de la caja influye en como sus componentes se ajustan ya que ofrecen además de la estética y estructura, energía, seguridad, protección y enfriamiento para los dispositivos electrónicos y otros dispositivos montados dentro de ella.

Las cajas de las computadoras personales vienen en todos los tamaños, formas, colores y estilos como se muestra abajo.






1. La Cubierta
La Cubierta desempeña un papel importante en el enfriamiento, protección y estructura de la PC. Esta debe adherirse al chasis de forma cómoda.
La cubierta debe estar certificada por el FCC (Federal Communications Commission). Esto significa que diseñada de acuerdo a la RFI (radio frequency interference o interferencia de radiofrecuencia) y del EMI (electromagnetic interference o interferencia electromagnética). De no ser así podría emitir señales RFy afectar algunos dispositivos.

Hay una variedad de formas en las cuales la cubierta exterior de la caja de la computadora personal se fija al chasis. Algunas por medio de tornillos que unen las partes de la cubierta al frente, a los lados y a la parte de atras del chasis lo cual rara vez se necesitará retirar por completo la cubierta y otras por medio de agujeros para sujeción o cerrojos por deslizamientos. Lo más recomendable es la que se asegura por medio de tornillos al chasis. En estas imágenes observarán un chasis de fácil manejo en sus partes, las cuales se pueden quitar para facilitar el colocar o reparar componentes.






La cubierta de la caja caja viene en dos versiones: la vertical y la horizontal siendo más usada la vertical. También vienen semi armadas con motherboards, memoria y procesador las cuales se llaman barebone.

Las cajas de computadoras personales pueden ser AT (Advance Technology o Tecnología Avanzada) o ATX (Advance Technology Extended o Tecnología Extendida). Si no sabes si tu caja es AT o ATX, mira por ejemplo el conector de corriente procedente de la fuente: en las AT es un cable negro y grueso que une el interruptor con la fuente, y en las ATX en vez de eso hay un pequeño cablecito de 2 hilos con un conector que va a la placa base.

2. Interruptores
El interruptor de energía y el de reinicio se encuentrán en la mayoría de las PC más modernas en la parte del frente.

3. Fuente de energía
La fuente de energía conocida como Power Supply debe convertir energía de corriente alterna en energía de corriente directa para ser utilizada por los componentes internos de la computadora y albergar y suministrar energía al ventilador de enfriamiento del sistema principal.

Las computadoras personales más antiguas, tienen el interruptor de encendido en la parte de atrás. Las más modernas lo tienen en el panel frontal y está conectado directamente a la tarjeta madre y no a la fuente de energía. La forma de la fuente de energía define su forma física. En la mayoría de los casos es el mismo que el de la caja del sistema y de la tarjeta madre.

4. Bahías para unidad
Las bahías para unidad se refiere al sitio en una computadora donde puede instalarse un disco duro, diskettera o unidad de CD-ROM. Por esto el número de bahías determina cuántos dispositivos de almacenaje pueden instalarse internamente en su computadora siempre y cuando la energía y el sistema de enfriamiento las soporte. En PCs, las bahías vienen en dos tamaños: 3.5 y 5.25 pulgadas, lo cual representa la altura de la bahía.
Además, la bahías se describen como internas o expuestas (también como ocultas y accesibles). Las internas no pueden usarse para discos removibles, como disketteras.
No debe confundirse una bahía con las ranuras (slots), las cuales son aberturas en la computadora donde pueden instalarse tarjetas de expansión.
Existen dos tipos de bahías para unidad:

Bahías externas de unidad - Estas bahías de unidad son internas con respecto a la caja y el chasis, pero se puede tener acceso a ellas externamente. Estas son utilizadas normalmente para unidades que tienen medios removibles, como discos flexibles, CD-ROM, DVD, unidades de cinta y semejantes.

Bahías internas de unidad - Estas bahías de unidad están completamente en el interior de la caja del sistema y no se puede tener acceso a ellas fuera del chasis. Estas bahías están diseñadas para las unidades de disco duro.

5. Chasis
Es el armazón o esqueleto que sujeta todos los componentes en una computadora. Detrás del marco de metal, plástico o acrílico de la caja se encuentra el chasis. El chasis provee la estructura, rigidéz y resistencia de la caja. Esto es así ya que muchos componentes y dispositivos en ella no pueden ser doblados o torcidos especialmente si estos están operando. El marco debe construirse de acero de por lo menos calibre 18. Sin embargo hay cajas con calibres más livianos o de aliminio. Si la caja tiene alibre más liviando no hay problema siempre y cuando esté reforzada en los sitios claves con una lámina de calibre más pesado.

Algunas cajas de computadoras personales vienen con diferentes tamaños, colores y formas como se mencionó antes. Cuando compre una caja de computadora procure que su diseño y apariencia del chasis no presenten problemas a la hora de hacer repaciones o actualizaciones.

6. Panel frontal
El panel frontal de la computadora tiene como propósito cubrir el extremo frontal del chasis. Las hay de diferentes diseños atractivos y colores, ofrece también información sobre el estado de su computadora. Otras contienen paneles que ocultan las unidades de disco, interruptores de encendido y reinicio.

Algunos paneles frontales contienen diodos de emisión de luz conocido como LED en el panel frontal. Existen 2 tipos de LED:

el que se enciende cuando la energía se activa y la computadora se prende. Normalmente es de color verde.

el que se enciende cuando se está teniendo acceso al disco duro. Cuando la unidad está buscando, leyendo o escribiendo datosel ELD color rojo, anaranjado o ambar se enciende y centellea.



MAINBOARD




La tarjeta madre, placa base o motherboard es una tarjeta de circuito impreso que permite la integración de todos los componentes de una computadora. Para esto, cuenta con un software básico conocido como BIOS, que le permite cumplir con sus funciones.
Pero ¿qué funciones son básicamente las que realiza toda tarjeta madre o placa base? Son varias y todas importantes y fundamentales para conseguir el funcionamiento correcto y óptimo de cualquier ordenador. En concreto, entre dichas tareas se encontrarían la comunicación de datos, el control y el monitoreo, la administración o la gestión de la energía eléctrica así como la distribución de la misma por todo el computador, la conexión física de los diversos componentes del citado y, por supuesto, la temporización y el sincronismo.








La tarjeta madre alberga los conectores necesarios para el procesador, la memoria RAM, los puertos y el resto de las placas (como la tarjeta de video o la tarjeta de red).

Actualmente entre los conectores más importantes y fundamentales que presenta toda placa base se encuentran los de sonido, el puerto USB, el puerto paralelo, el puerto firewire y el de serie, el de Red y los de tipo PS/2.

Los de sonido son los que se emplean para conectar desde micrófonos hasta altavoces mientras que el citado USB es el que se utiliza para conectar todo tipo de dispositivos periféricos tales como ratones, impresoras o un escáner.

Existen varios conceptos vinculados a las tarjetas madre que deben ser comprendidos para conocer el

funcionamiento de esta placa base. Por ejemplo, se conoce como chipset al conjunto de los principales circuitos integrados que se instalan en la tarjeta madre.

El socket o zócalo es un sistema electromecánico de soporte y conexión eléctrica que permite la fijación y conexión del microprocesador al motherboard.

Por otra parte, un slot es una ranura que se encuentra en la tarjeta madre y que posibilita conectar a ésta distintas tarjetas adicionales o de expansión, que, en general, sirven para controlar dispositivos periféricos como las impresoras. Las computadoras actuales suelen presentar entre ocho y doce slots.

Los puertos IDE o ATA son aquellos que controlan los dispositivos de almacenamiento de datos, como los discos duros. Otros puertos importantes en una tarjeta madre son PS/2 (para conectar el mouse y el teclado), USB, COM1 y LPT1.

Cabe destacar, por último, que existen distintos tipos de placas madre, como XT, AT, Baby-AT, ATX, Mini-ATX, micro ATX, LPX, NLX, Nano-ITX, BTX, WTX y ETX, entre otros.

La citada tarjeta madre ATX se caracteriza, por ejemplo, por el hecho de que es la más fácil tanto a la hora de colocarse como a la hora de funcionar en materia de ventilación. Mientras, la Baby-AT fue la que años atrás se convirtió en la má utilizada por su formado reducido y por su adaptación a cualquier tipo de caja, pero la circunstancia que hizo que dejara de ser la primordial fue que sus componentes están muy cerca y eso en ocasiones traía muchos problemas de funcionamiento.

DEFINICION, COMCEPTO Y DIFERENCIA DE MEMORIAS RAM



¿ Qué es... la memoria RAM?

La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.

Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente

Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:


La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.



De forma interna, la memoria RAM se puede entender como una tabla de celdas de datos en filas y columnas. Para acceder a un dato concreto, contenido en una de esas celdas, el controlador de memoria debe darle las "coordenadas" donde se encuentra dicho dato.
Es decir, que el proceso completo para obtener el dato de una celda de memoria, pasa por darle la coordenada "columna" (CAS), darle la coordenada "fila" (RAS), y esperar a obtener el dato solicitado. Entre todos estos procesos existen ciertos "tiempos" que necesita la memoria para "estabilizar" electrónicamente las señales y poder responder a cada solicitud. Estos tiempos variarán en función de la calidad de la memoria.

FSB (Front Side Bus)
Es la "línea" de comunicación entre el procesador, el controlador de memoria y la memoria en si.

Reloj del sistema. Se mide en Megaherzios (MHz)
Existe un componente del sistema que reside en la placa madre que es el Reloj. Este, envía una señal a todos los componentes del ordenador a un ritmo concreto. Si el reloj del sistema funciona a 100MHz, esto significa que que genera 100 millones de ciclos de reloj por segundo. Cada acción que procesa el ordenador se marca con un tiempo mediante estos ciclos de reloj. Cuando se procesa una solicitud a la memoria, el controlador puede informar al procesador que esos datos llegarán, por ejemplo, en seis ciclos de reloj.
Es posible que la CPU y otros componentes puedan funcionar a un ritmo mayor o menor que el marcado por el reloj. Estos componentes requieren de un factor de multiplicación de la señal del reloj para sincronizarlos. Por ejemplo, cuando tenemos un reloj de 100MHz y una CPU a 400MHz, cada dispositivo sabrá que cada ciclo de reloj del sistema, será igual a cuatro ciclos de reloj de la CPU y se ajustarán para sincronizar sus acciones.
Debemos entender que cuando hacemos un overclocking con el reloj del sistema, todos los componentes se ven afectados en mayor o menor medida en función del factor de multiplicación. Además hay que considerar que el sistema se "caerá" cuando el componente más lento no sea capaz de seguir el ritmo.
Por ejemplo, hay dos maneras de ajustar la velocidad del procesador. Una es configurando los MHz del reloj. Otra es modificando el multiplicador asignado a este. Lógicamente, la configuración del reloj afectará al resto de los componentes.
Para conseguir mejorar el rendimiento del ordenador, hay que tener en cuenta todo el conjunto de los componentes y sus limitaciones.
Es decir, un equipo con un FSB a 133MHz y con un multiplicador de 15 para el micro, conseguirá un procesador funcionando a 1995MHz.
Sin embargo, será más rápido un equipo con un FSB a 166MHz con un multiplicador de 11,5, a pesar que el procesador funcione tan solo a 1909MHz.

CAS (Column Address Strobe)
La latencia CAS es un parámetro de la velocidad de la memoria. Se refiere al número de ciclos de reloj necesarios para poder acceder a una columna de un dato concreto de la RAM. Es una medida de retraso, por lo que cuanto menor sea, indicará una memoria más rápida. A veces se abrevia como CL (Cas Latency) o CAS.

RAS (Row Address Strobe)
La latencia RAS es el concepto equivalente a CAS, pero referido a filas en vez de a columnas.

Timings. Latencias
Es el dato que nos orienta sobre las prestaciones de una memoria.

DDRAM (Double Data Rate Random Access Memory)
Es un tipo de memoria, derivada de la SDRAM, donde se realizan transacciones de la información, tanto en el momento de subida de la señal de reloj como en el momento de bajada. De esta manera, con una velocidad de reloj de 133MHz, conseguimos una velocidad efectiva de 266Mhz. Esta es la explicación de porque las memorias DDRAM pueden tener latencias de, por ejemplo, 2,5 ciclos de reloj además de poder tenerlas de 2 o de 3, como ocurre con la SDRAM.

Dual Channel
Se trata de una nueva forma de trabajar con la memoria DDR donde el controlador ofrece a la CPU dos canales independientes y simultáneos para acceder a los datos. De esta manera se duplica el ancho de banda teórico. Para ello es imprescindible rellenar los bancos de memoria con 2 módulos.
Cuando compramos memoria Dual Channel, el fabricante garantiza que el par de módulos incluidos en el paquete disfrutan de timings idénticos. De esta manera, mejoramos el rendimiento en placas configuradas para trabajar en Dual Channel.

Se trata de datos relativos, ya que no conocemos las condiciones en que los fabricantes han obtenido esos resultados y a que esas prestaciones varían en función de la configuración del equipo. En la práctica, esas prestaciones pueden modificarse en función de la calidad de la memoria, del chipset de la placa y de otros módulos de memoria que podamos tener instalados.
Este dato suele ser de la forma: A-B-C-D ET. En caso de que no nos den todos los timings, siempre nos darán los datos de izquierda a derecha ya que es el orden de importancia. Cuanto menor sean los números, mejores serán las prestaciones ya que hacen referencias a retardos.
Significan: A (latencia CAS) - B (latencia entre CAS y RAS) - C (precarga RAS) - D (tRAS) - ET (tiempo de traducción)
El timing C, prácticamente no afecta el rendimiento de la memoria. Hace refencia a latencias cuando la memoria funciona en "Burst mode".
El timing D es el tiempo de precarga del RAS y debemos configurarlo igual o mayor a A+C+2, para conseguir un equipo estable.
El timing E es el tiempo que se necesita para convertir las coordenadas lógicas en las coordenadas físicas. Es decir, en localizar el módulo de memoria donde se encuentra el dato solicitado. Solo tiene sentido cuando tenemos más de un módulo de memoria y en caso de que no sea 1T, el retraso será causado por el chipset de la placa, antes que por el propio módulo de memoria.

O/C (Overclocking)
Un método para incrementar la velocidad del sistema, aprovechando las especificaciones de los componentes (memoria, procesador, placa madre, vga). Puede realizarse cambiando la configuración del hardware o del software.

Tiempo de acceso. Se mide en nanosegundos (ns)
El tiempo de acceso se mide desde el momento en el que módulo de memoria recibe una solicitud de datos hasta el momento en que esos datos están disponibles. Cuanto más bajo sea el tiempo de acceso, más rápida será la memoria.





Diferencias entre memorias DDR y DDR2

Las memorias DDR y DDR2 no son compatibles entre sí. Existen diferencias en el voltaje, la cantidad de pines y las señales entre DDR(1) y DDR(2). Los zócalos DDR2 no aceptan DIMM DDR y los zócalos DDR no aceptan DIMM DDR2.


Diferencias entre memorias DDR y DIMM

Las memorias de tecnología DIMM son anteriores a DDR, el formato es distinto(DIMM tiene 168 contactos y dos muescas mientras que las DDR tienen 184 contactos y una muesca), estas memorias son incompatibles entre si, además su funcionamiento es diferente, las DDR son el doble de rápidas que una memoria DIMM de capacidad equivalente (respecto de las DIMM